

施工例

狭小地への搬入

2t 車程度しか搬入できない現場への 施工機を自走にて搬入可能。 ※特別な許可が必要な場合があります

吊り上げにて施工機搬入

高低差のある現場へのラフタークレーン にて吊り上げて搬入可能。 ※特別な許可が必要な場合があります

構造物に接近した施工

無振動圧入工法の為、既存構造物に 接近した施工も可能。

取扱店

工法についての 詳細はコチラ

決して家を傾かせない。

40年の実績が誇る安心・安全。

災害における耐震性能が確認され、大手ハウスメーカーで採用。

従来高額であったコンクリート杭を製造・施工までワンストップで行うことで、 低価格で販売することを実現しました。

「安心・安全でコストパフォーマンスが良い 地盤改良工事を採用したい」

そう考えるすべての人を、足元から支えます。

既製コンクリート杭(RC杭)を用いた杭状地盤補強工法です

本工法は、既製コンクリート杭を圧入可能な施工機械にて、プレボーリングを行ってから 杭頭に圧力を加え地中に杭を押し込む工法です。

支持層まで杭を確実に打ち込むことで、土質に影響されず丈夫な土台をつくることが可能です。

PSD工法 大臣認定工法 TACP-0346(先端地盤:粘土質地盤) TACP-0347(先端地盤:砂質地盤)

標準貫入試験のN値により杭の支持力を算定

認定証(粘土質)

指定証(粘土質)

認定証(砂質)

指定証(砂質)

PSD-S工法Ⅱ

GBRC 性能証明 第10-07号 改3(先端地盤:砂質土地盤・粘性土地盤)

スクリューウェイト貫入試験の換算N'値により杭の支持力を算定

【N'値の求め方】

砂質土の場合 N'=2Wsw+0.067Nsw 粘性土の場合 N'=3Wsw+0.050Nsw

Wsw:スクリューウェイト貫入試験における荷重(kN)

Nsw: スクリューウェイト貫入試験における貫入量1mあたりの半回転数(回)

性能証明書

RC杭標準規格

外径D(mm)	長さL(m)	厚さt(m)	軸方「	向鉄筋	基準曲げモーメント	조 目(1 0/)	長期許軸方向力 (kN)
			種類	本数	(kN • m)	重量(kgf/m)	
200	3.0	50	D6	6	2.9	60	235
200	3.5	50	D6	6	2.9	60	235
200	4.0	50	D6	6	2.9	60	235
200	4.5	50	D6	6	2.9	60	235
200	5.0	50	D6	6	2.9	60	235
200	5.5	50	D6	6	2.9	60	235
200	6.0	50	D6	7	5.1	60	235
200	6.5	50	D6	7	5.1	60	235
200	7.0	50	D6	7	5.1	60	235
250	3.0	50	Φ9	6	5.9	80	314
250	3.5	50	Φ9	6	5.9	80	314
250	4.0	50	Φ9	6	5.9	80	314
250	4.5	50	Φ9	6	5.9	80	314
250	5.0	50	Φ9	6	5.9	80	314
250	5.5	50	Φ9	6	5.9	80	314
250	6.0	50	Φ9	6	5.9	80	314
250	6.5	50	Φ9	6	5.9	80	314
250	7.0	50	Φ9	7	7.8	80	314

JIS認証取得の既製杭で品質が安定

JIS認証工場・JIS規格原材料にて製造しております。 鉄筋・砂・砕石・セメントすべてにおいてJIS規格にて管理しております。

杭製造写真

鉄筋かご編成

コンクリート投入

遠心成型

杭保管状況

軟弱層厚・支持層深度が不均一な地盤に有効

全ての杭の打止め荷重を管理します。

軟弱層厚・支持層の微妙な傾斜や不陸にも対応ができます。

確実に支持層まで杭を打ち込むため、土質を問わず腐植土地盤でも施工が可能です。

STRONG POINT

低騒音・低振動の杭打機

油圧式オーガーでプレボーリングを行うため振動や騒音を最小限に 抑えることが可能です。

市街地や住宅密集地などの振動・騒音で施工が困難な場所でも、近隣へやさしい無振動低騒音施工が可能です。

環境にやさしい

混合材を使用せず既製杭を圧入するため、残土や産業廃棄物が 発生しません。柱状改良工事では六価クロムの発生が危惧 されることがありますが、現場の土と撹拌することがない ため、土壌汚染のリスクがありません。また既製杭のため 引き抜きを検討する際も撤去費用を抑えることができ、土地の 価値を損うことはありません。

養生期間が不要でスピーディー

既製杭による施工のため養生期間を必要としません。 打設翌日から根切りができ、柱状改良と比較して 工期短縮が可能であるため、施工コストを削減できます。

PSD工法 大臣認定工法

地盤から決まる杭の長期鉛直支持力

$$Ra = \frac{1}{3} \left\{ \alpha \overline{N} Ap + (\beta \overline{N} sLs + \gamma \overline{qu} Lc) \psi \right\}$$

記号

 α : 先端支持力係数 300

eta: 砂質地盤における周面摩擦力係数 3.3

 γ : 粘土質地盤における周面摩擦力係数 0.5

記号

N: 杭先端から上方1D、下方1Dの範囲の標準貫入試験の

打撃回数から算出した平均N値

砂質地盤2≦N≤30

 \overline{N} <2の場合 \overline{N} =0 \overline{N} >30の場合 \overline{N} =30

粘土質地盤2≦N≦15

N<2の場合N=0 N>15の場合N=15

Ap: 杭先端の有効断面積(㎡)

 $\mathbf{A}\mathbf{p} = \pi \cdot \mathbf{D}^2 / 4$

NS: 杭の周囲の地盤のうち、砂質地盤の標準貫入試験による

打撃回数から算出した平均Ns値

 $2 \le \overline{Ns} \le 6$ $\overline{Ns} < 2$ の場合 $\overline{Ns} > 6$ の場合 $\overline{Ns} = 6$

記号

LS: 杭の周囲の地盤のうち、砂質地盤に接する長さ(m) 先行堀削周囲と杭先端から上方1Dを除く

QU: 杭の周囲の地盤のうち、粘土地盤の一軸圧縮強度の

平均値(kN/m³)

 $20 \leq \overline{qu} \leq 100$

 \overline{qu} <20の場合 \overline{qu} =0 \overline{qu} >100の場合 \overline{qu} =100

LC: 杭の周囲の地盤のうち、粘土地盤に接する長さ(m)

先行堀削周囲と杭先端から上方1Dを除く

 ψ :杭の周長(m)

 $\psi = \pi D$ D: 杭径

適用範囲

地盤の種類

先端地盤:砂質地盤および粘土質地盤 周囲の地盤:砂質地盤および粘土質地盤

最大施工深さ

先端地盤:施工地盤面-18m 先端粘土質地盤:施工地盤面-22m

適用する建築物の規模

床面積の合計が10,000㎡以内の建築物

長期許容鉛直支持力早見表

先端支持力								(単位:kN
杭径 N値	3	5	8	10	12	15	18	20
Φ200mm	9.4	15.7	25.1	31.4	37.7	47.1	56.5	62.8
Φ250mm	14.7	24.5	39.3	49.1	58.9	73.6	88.3	98.1
							※粘土質地盤の	D最大平均N値は15
周面摩擦力: 码	沙質地盤							(単位:kN
杭径 N値(長さ)	3(1m)	3(2m)	3(3m)	3(4m)	5(1m)	5(2m)	5(3m)	5(4m)
Φ 200mm	2.1	4.1	6.2	8.3	3.5	6.9	10.4	13.8
Φ 250mm	2.6	5.2	7.8	10.4	4.3	8.6	13.0	17.3
周面摩擦力:料	占土質地盤							(単位:kN)
杭径 qu値(長さ)	30(1m)	30(2m)	30(3m)	30(4m)	60(1m)	60(2m)	60(3m)	60(4m)
Ф200mm	3.1	6.3	9.4	12.6	6.3	12.6	18.8	25.1
Φ250mm	3.9	7.9	11.8	15.7	7.9	15.7	23.6	31.4

PSD-S工法Ⅱ 性能証明工法

地盤から決まる杭の長期鉛直支持力

Ra =
$$\frac{1}{3} \left\{ \alpha sw \overline{N'}Ap + (\beta sw \overline{N'}sLs + \gamma sw \overline{N'}cLc) \psi \right\}$$

記号

 $lpha_{
m sw}$: 先端支持力係数 300

 eta_{sw} : 砂質土地盤における周面摩擦力係数 3.3 γ_{sw} : 粘性土地盤における周面摩擦力係数 6.0

記号

N': 杭先端から上方1D、下方1Dの範囲の平均N'値

砂質地盤3≦N≦20

 \overline{N} < 3の場合 \overline{N} = 0 \overline{N} > 20の場合 \overline{N} = 20

粘土質地盤3≦N≦15

 $\overline{N}' < 3$ の場合 $\overline{N}' = 0$ $\overline{N}' > 15$ の場合 $\overline{N}' = 15$

Ap: 杭先端の有効断面積(m²)

 $Ap = \pi \cdot D^2/4$

N'S: 杭の周囲の地盤のうち、砂質土地盤の平均N's値

 $3 \leq N$'s ≤ 8

 $\overline{N's}$ < 3の場合 $\overline{N's}$ = 0 $\overline{N's}$ > 8の場合 $\overline{N's}$ = 8

記号

LS: 杭の周囲の地盤のうち、砂質土地盤に接する長さ(m) 先行堀削周囲と杭先端から上方1Dを除く

N'C: 杭の周囲の地盤のうち、粘性土地盤の平均N'c値

 $3 \leq \overline{Nc} \leq 8$

 $\overline{N'c}$ < 3の場合 $\overline{N'c}$ = 0 $\overline{N'c}$ > 8の場合 $\overline{N'c}$ = 8

LC: 杭の周囲の地盤のうち、粘性土地盤に接する長さ(m)

先行堀削周囲と杭先端から上方1Dを除く

ψ : 杭の周長(m)

 $\psi = \pi \cdot \mathbf{D}$ D:杭径

適用範囲

地盤の種類

先端地盤:砂質土地盤および粘性土地盤 周囲の地盤:砂質土地盤および粘性土地盤

最大施工深さ

施工地盤面-10m (条件により、砂質土地盤は-18m、粘性土地盤は-20m)

適用する構造物 ①~③の全ての条件を満足する建築物(その他、擁壁、土間スラブなど)

①地上3階以下 ②建物高さ13m以下 ③延べ床面積1,500㎡以下(平家に限り3,000㎡以下)

長期許容鉛直支持力早見表

先端支持力								(単位:kN)
杭径 N'值	3	5	8	10	12	15	18	20
Φ200mm	9.4	15.7	25.1	31.4	37.7	47.1	56.5	62.8
Φ250mm	14.7	24.5	39.3	49.1	58.9	73.6	88.3	98.1
							※粘性土地盤Œ)最大平均N'値は15
周面摩擦力:	砂質土地盤							(単位:kN
杭径 N'値(長さ)	3(1m)	3(2m)	3(3m)	3(4m)	5(1m)	5(2m)	5(3m)	5(4m)
Φ 200mm	2.1	4.1	6.2	8.3	3.5	6.9	10.4	13.8
Φ 250mm	2.6	5.2	7.8	10.4	4.3	8.6	13.0	17.3
司面摩擦力: #	14性土地盤							(単位:kN
杭径 N'値(長さ)	3(1m)	3(2m)	3(3m)	3(4m)	5(1m)	5(2m)	5(3m)	5(4m)
Φ200mm	3.8	7.5	11.3	15.1	6.3	12.6	18.8	25.1
Ф250mm	4.7	9.4	14.1	18.8	7.9	15.7	23.6	31.4